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FORMULAE LIST (continued)

De Moivre’s theorem
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MARKS
Total marks — 35

Attempt ALL questions

 1. Given tany x x 7 2 , find 
dy
dx .

 2. Express 
  

x x
x x

 

 

2

2

3 14

3 1
 in partial fractions.

 3. A system of equations is defined by

x y z
x y z
x y z

   
  
  

3 1

3 2 4 11

4 2 15

Use Gaussian elimination to determine whether the system shows redundancy, 
inconsistency or has a unique solution.

 4. Use integration by parts to find lnx x Gx 4  , x  0.

 5. Find the particular solution of the differential equation 

2
2

2
4 5 10 11 23

G y Gy y x x
Gx Gx

      

given that 2, 14 when 0
Gyy x
Gx

   .

 6. (a) Express 1 3z i   in polar form.

(b) Hence, or otherwise, show that z3 is real.
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 7. (a) Find an expression for  2

1

3
n

r
r r



  in terms of n.

Express your answer in the form    1
3
n n a n b  .

(b) Hence, or otherwise, find  
20

2

11

3
r

r r


 .

 8. (a) Consider the statement:

For all integers a and b, if a < b then a2 < b2.

Find a counterexample to show that the statement is false.

(b) Let n be an odd integer.

Prove directly that n2 − 1 is divisible by 4.

 9. (a) State the matrix A, associated with an anti-clockwise rotation of 
2
π

 radians 
about the origin.

The matrix B is given by

3 1
2 2

31
2 2

B

 
 
 
 
  

 

The matrix given by AB is associated with an anti-clockwise rotation of α radians 
about the origin.

(b)  (i) Determine AB.

 (ii) Find the value of α.

(c) Determine the least positive integer value of n such that (AB)n = I, where I is the 
2 × 2 identity matrix.

[END OF QUESTION PAPER]
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MARKS
Total marks — 65

Attempt ALL questions

 1. The function f is defined by   sin 12 3f x x .

Find  'f x .

 2. Find 
2

3 10
x dx

x 




.

 3. Matrix A is defined by 

2 2 4

1 0

1 0 2

x
A x

 
   
  

, where x.

(a) Find a simplified expression for the determinant of A.

(b) Hence, determine whether A−1 exists for all values of x.

 4. Calculate the gradient of the tangent to the curve with equation sin2 2 2 3x y y x   at 
the point (0, 0).

 5. (a) Write down and simplify the general term in the binomial expansion of
8

2

2
3x

x
  
 

.

(b) Hence, or otherwise, determine the coefficient of x−1.

 6. (a) Use the Euclidean algorithm to find d, the greatest common divisor of 703 and 
399.

(b) Find integers a and b such that d = 703a + 399b.

(c) Hence find integers p and q such that 76 = 703p + 399q.
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 7. (a) Solve the differential equation

52 6 xdy y e
dx

 

given that when x = 0, y = −1.

Express y in terms of x.

(b) The solution of the differential equation in (a) is also a solution of

3 2
2

3 2
5 ,x

d y d y ke k
dx dx

  .

Find the value of k.

 8. The fourth and seventh terms of a geometric sequence are 9 and 243 respectively.

(a) Find the:

 (i) common ratio

 (ii) first term.

(b) Show that 2 1 3nn

n

S
S

   where nS  represents the sum of the first n terms of this 

geometric sequence.

 9. Express 57210 in base 9.

 10. A curve is defined by 
25xy x ,where x > 0.

Find 
dy
dx  in terms of x.

[Turn over

4

2

1

1

2

2

5



page 06

MARKS
 11. On a building site, water is stored in a container.

The container is a cone with diameter 180 cm at its widest point and height of 
150 cm. A cross section of the cone is shown below.

150 cm

180 cm

(a) Show that when the water level is at a height of h cm, 0 ≤ h ≤ 150, the volume of 
water in the container can be written as

π 33
25
hV  .

[The volume of a cone is given by π 21
3

V U h .]

Water is pumped into the container at a constant rate of 10 litres per second.

(b) Find the rate at which the height is increasing when h = 125.

 12. Prove by induction that, for all positive integers n, ( )1

1

2 2 1 1
n

r n

r
r n



   .
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 13. Points scored in the long jump element of the decathlon can be calculated using a 

solution of the differential equation

( )220 1.4
dPm P
dm

  , m > 220

where m is the distance jumped in centimetres and P the points scored.

Given that a jump of 807 centimetres scores 1079 points, find an expression for P in 
terms of m.

 14. A complex number is defined by w = a + ib, where a and b are positive real numbers.

Given w2 = 8 + 6i, determine the values of a and b.

 15. A function ( )f x  has the following properties:

• ( )
( )4

1
1 1

xf x
x
 

 

• the first term in the Maclaurin expansion of ( )f x  is 1.

(a) Find the Maclaurin expansion of ( )f x  up to and including the term in x2.

(b) Use the substitution ( )21u x   to find 
( )4

1
1 1

x dx
x


 




.

(c) Determine an expression for ( )f x .

[END OF QUESTION PAPER]
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