X056/201

NATIONAL QUALIFICATIONS 2001 THURSDAY, 17 MAY 9.00 AM - 9.45 AM

MATHEMATICS INTERMEDIATE 2 Units 1, 2 and 3 Paper 1 (Non-calculator)

Read carefully

- 1 You may NOT use a calculator.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Square-ruled paper is provided.

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of a triangle: Area =
$$\frac{1}{2}ab \sin C$$

Volume of a sphere: Volume =
$$\frac{4}{3}\pi r^3$$

Volume of a cone: Volume =
$$\frac{1}{3}\pi r^2 h$$

Volume of a cylinder: Volume =
$$\pi r^2 h$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where *n* is the sample size.

ALL questions should be attempted.

Marks

1. Factorise

$$x^2 + 2x - 15$$
.

2

2.

Find the equation of the straight line.

3

3. Find the point of intersection of the straight lines with equations 2x + y = 5 and x - 3y = 6.

4

4. $P = R^2b - 5$

Change the subject of the formula to R.

3

[Turn over

2

1

5. The stem and leaf diagram shows the amounts of money spent by customers in a shop.

n = 33

2|1 represents 21 pence

(a) Using the above information, find

(i)	the median	1
(ii)	the lower quartile and the upper quartile	2

- (iii) the semi-interquartile range.
- (b) What is the probability that a customer chosen at random spent more than 80 pence?

6.

Part of the graph of $y = \cos bx^{\circ}$ is shown in the diagram. State the value of b.

1

7. The square and rectangle shown below have the same **perimeter**.

Show that the length of the rectangle is (3x + 1) centimetres.

2

Marks

- 8. (a) Express $\frac{3}{x} \frac{5}{x+2}$, $x \ne 0$, $x \ne -2$, as a single fraction in its simplest form.
 - (b) Express $\sqrt{18} \sqrt{2} + \sqrt{72}$ as a surd in its simplest form.

[END OF QUESTION PAPER]

X056/203

NATIONAL QUALIFICATIONS 2001 THURSDAY, 17 MAY 10.05 AM - 11.35 AM MATHEMATICS INTERMEDIATE 2 Units 1, 2 and 3 Paper 2

Read carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Square-ruled paper is provided.

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A \text{ or } \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of a triangle: Area =
$$\frac{1}{2}ab \sin C$$

Volume of a sphere: Volume =
$$\frac{4}{3}\pi r^3$$

Volume of a cone: Volume =
$$\frac{1}{3}\pi r^2 h$$

Volume of a cylinder: Volume =
$$\pi r^2 h$$

Standard deviation:
$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}}$$
, where *n* is the sample size.

	ALL questions should be attempted.	3.6
1.	The population of a city is increasing at a steady rate of 2.4% per annum. The present population is 528000 .	Marks
	What is the expected population in 4 years time?	
	Give your answer to the nearest thousand.	3
2.	Two groups of six students are given the same test.	
	(a) The marks of Group A are	
	73 47 59 71 48 62.	
	Use an appropriate formula to calculate the mean and the standard deviation.	
	Show clearly all your working.	4
	(b) In Group B, the mean is 60 and the standard deviation is 29.8.Compare the results of the two groups.	2
3.	The contents of twenty matchboxes were counted.	
	44 44 46 45 47 48 47 41 48 45	
	45 44 42 43 44 46 46 43 49 45	
	(a) Construct a dot plot for the data.	2
	(b) Describe the shape of the distribution.	1

[Turn over

1

(c) What would you expect the "average contents per matchbox" to be?

4. Gordon and Brian leave a hostel at the same time.

Gordon walks on a bearing of 045° at a speed of 4.4 kilometres per hour.

Brian walks on a bearing of 100° at a speed of 4.8 kilometres per hour.

If they both walk at steady speeds, how far apart will they be after 2 hours?

5

2

5.

The equation of the parabola in the above diagram is

$$y = (x - 2)^2 - 9.$$

- (a) State the coordinates of the minimum turning point of the parabola.
- (b) Find the coordinates of C.
- (c) A is the point (-1, 0). State the coordinates of B.

6. A drinks container is in the shape of a cylinder with radius 20 centimetres and height 50 centimetres.

- (a) Calculate the volume of the drinks container.
 - Give your answer in cubic centimetres, correct to two significant figures.

(b) Liquid from the full container can fill 800 cups, in the shape of cones, each of radius 3 centimetres.

What will be the height of liquid in each cup?

4

Mark

3

7. Multiply out the brackets and collect like terms.

$$(x+4)(2x^2+3x-1)$$

3

[Turn over

8.

Marks

A regular pentagon ABCDE is drawn in a circle, centre O, with radius 10 centimetres.

Calculate the area of the regular pentagon.

5

9. (a) Express $a^2(2a^{-\frac{1}{2}} + a)$ in its simplest form.

2

(b) Solve the quadratic equation

$$3x^2 + 3x - 7 = 0$$

using an appropriate formula.

Give your answers correct to 1 decimal place.

4

10. The diagram shows a mirror which has been designed for a new hotel.

The shape consists of a sector of a circle and a kite AOCB.

- The circle, centre O, has a radius of 50 centimetres.
- Angle AOC = 140° .
- **AB** and CB are tangents to the **circle** at A and C respectively.

Find the perimeter of the mirror.

11. (a) Solve the equation

$$4 \tan x^{\circ} + 5 = 0$$
, $0 \le x \le 360$.

3

(b) Show that

$$\tan x^{\circ}\cos x^{\circ} = \sin x^{\circ}.$$

2

[END OF QUESTION PAPER]