

Past Papers Advanced Higher Chemistry

2017 Marking Scheme

Grade	Mark Re	equired	% condidates cabiavina anada
Awarded	(/ ₁₃₀)	%	% candidates achieving grade
Α	89+	68.5%	30.1%
В	76+	58.5%	28.5%
С	63+	48.5%	24.7%
D	52+	43.1%	7.0%
No award	< 52	<43.1%	9.7%

Section:	Multiple Choi	ce	Extended A	Answer	Investi	gation
Average Mark:	21.0	/30	38.0	/70	19.8	/30

2017 Adv Higher Chemistry Marking Scheme									
MC Qu	Answer	% Pupils Correct	Reasoning						
1	D	11	A Only helium is characterised by the filling of an s-orbital in outer shell B most noble gases are characterised by filling of p-orbitals in outer shell but not He C Neon and Argon do not have any d-orbitals D He characterised by filling of s-orbital and other noble gases by filling of p-orbital						
2	В	97	☑A Calcium in ground state has an electronic configuration of 1s²2s²2p63s²3p64s² ☑B Scandium in ground state has an electronic configuration of 1s²2s²2p63s²3p63d¹4s² ☑C Titanium in ground state has an electronic configuration of 1s²2s²2p63s²3p63d²4s² ☑D Vanadium in ground state has an electronic configuration of 1s²2s²2p63s²3p63d³4s²						
3	С	74	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
4	В	58	Radius ratio = $\frac{\text{Radius of positive ion}}{\text{Radius of negative ion}} = \frac{\text{Zn}^{2+}}{\text{S}^{2-}} = \frac{74}{184} = 0.40$						
5	A	87	☑A 2xOH₂ ligands, 4xCl⁻ ligands, Co²⁺ central ion and overall charge of 2- ☑B diaqua in name of complex ion means 2xOH₂ ligands in complex ☑C cobaltate in name means the complex will have a negative charge overall ☑D diaqua in name of complex ion means 2xOH₂ ligands in complex						
6	C	45	HCl (strong acid) and NH₃ solution (weak alkali) form salt with acidic pH ☑A bromothymol blue 6.0-7.6 ☑B phenolphthalein 8.2-10.0 ☑C methyl orange 3.2-4.4 ☑D phenol red 6.6-8.0						
7	С	80	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}log_{10}c$ $= \frac{1}{2}x (4.2) - \frac{1}{2}x log_{10} (0.01)$ $= 2.1 - \frac{1}{2}x (-2)$ $= 2.1 - (-1)$ $= 3.1$						
8	Α	47	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta H^{\circ} = \Delta G^{\circ} + T \Delta S^{\circ}$ $\Delta H^{\circ} = -\text{ve value} + T \times (-\text{ve value})$ $\Delta H^{\circ} = -\text{ve value} + -\text{ve value}$ $\Delta H^{\circ} = -\text{ve value}$						
9	D	88	Experiment [A] [B] Effect on Rate Order of Reactant 1						
10	D	83	$k = \frac{Rate}{[NO_2]^2 \times [Cl_2]} = \frac{\text{mol } l^{-1} s^{-1}}{\text{mol}^2 l^{-2} \times \text{mol } l^{-1}} = \frac{\text{mol } l^{-1} s^{-1}}{\text{mol}^3 l^{-3}} = l^2 \text{ mol}^{-2} s^{-1}$						

			■A sp² hybridis										
11	В	82	☑B sp³ hybridis ☑C Pi bonds are ☑D Pi bonds are	ation con	tains onl	y sigma/s C=C but	ingle bo	onds bac only	ı cinal	a /cian	aa ban	da	
			∠D Pi bonds are	e found in	C=C and	C=C but (<i>C</i> ≡C but (ethane	has onl	y singi y sina	e/sign le/siar	na bon	us Ids	
						Type of		C - C	C = C	C-H	N=C	N-C	
			H		١	Number of			2	5	1	1	
			H.	Н. 🖊		Type of	Bond	C - C	C = C	С-Н	N=C	N-C	
12		52		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Sigma	σ		1	1	1	1	
12	C	53				Pi	π	2	1	5	1	0	1
			Н	<u> </u>	Sigma	bonds =	2 C - C	+ C=		C - H	+ N:		N-C
			'' \N /	7.1		=	2σ	+ 20	+	5 σ	+ 1	5 +	1σ
			- FOW :			=	11σ						
			■A non-50% mi										20
13	В	83	☑B 50% mixtur ☑C geometric is	somers ar	e not op	tically act	ive	Ci oui	10 101 1	ii a i a	COMMC	iiii X i Gi	
			≥ D geometric i										
	_		Lone pair on N a			racted to	δ + of (C in polo	ır C-B	r bond	in CH	₃CH2B	r
14	D	80	∴ NH₃ is acting Negative charge		•	acted to	S+ of C	in nola	r C_Rr	band	in CH.	D n	
			∴ OH is acting			ucreu 10	0.010	in polai	C-Di	Dona	111 01 13	ы	
			⊠ A Compound A			hich would	d reduc	e to for	m a p	rimary	/ alcoh	ol	
15		89	⊠ B Compound B							_		ning	
			✓ C Compound C✓ Compound D						•		ol.		
					rmula	Type of							
14	N	01			V(CH ₃) ₂	Tertio			37.5	()			
16	D) 91		15)2NH	Second	•		56.3					
					19NH2	Primo	77.8						
			☑A propanal (aldehyde) cannot form an ester by a condensation reaction										
17	В	72	☑B propan-1-ol oxidises to propanoic acid and both join together to form an ester ☑C propan-2-ol oxidises to form the ketone propanone which does not form esters										
			☑D propanoic acid (carboxylic acid) will not oxidise										
			☑A two rings of									•	
18	A	82	図B electrophiles 図C nucleophiles	s are att	racted to	o the ring	s of de	localise	d elec	trons	alac+-	ona	
	• •		☑C nucleophiles ☑D all 6 bonds	between (carbons	in benzen	e are e	gual in l	ength	unseu	CICCII	UNS	
				Molecule		ne Types		•	_	Molec	ule		
				1	3x ³⁵ Cl			(3x35)		= 1	105		
19	В	30		2	2x ³⁵ Cl			(2x25)		•			
			_	<u>3</u>	1x ³⁵ Cl	2x ³⁷ Cl		(1x25)	•	37) = 1 37) =			
			<u> </u>		ites nres	l .	lkul ket	tone wh				stanca	,
20		FO	⊠ B 2962-2853€										
20		50	☑C 3100-3000d	:m ⁻¹ indica	ites pres	sence of b	enzene	ring wl	nich is	not f	ound ii	1 subs	
			⊠ D 3500-3300								stanc	e	
	•		☑A proteins are ☑B antisense di ☑B	_			_		ntagor	าเร†ร.			
21	A	$A \mid / \cup \mid$	⊠ C agonists wo	_				•					
			≥ D agonists wo		•		•						

22	D	41	 ☒A silver nitrate is soluble ∴ silver nitrate unsuitable for gravimetric analysis ☒B silver sulphate is soluble ∴ potassium sulphate unsuitable for gravimetric analysis ☒C barium carbonate is insoluble so silver ions cannot precipitate ☒D silver chloride is insoluble ∴ ammonium chloride suitable for gravimetric analysis
23	A	78	Green wavelengths transmitted :. Red & blue wavelengths are absorbed by Ni ²⁺ ions. Red and Blue light is magenta/purple :: 390nm is absorbed
24	C	78	Solvent Front = 8.0cm If R _f value = 0.75 then spot would be found at 0.75 x 8.0cm = 6.0cm ∴ Spot Q
25	A	74	☑A caffeine should be more soluble in solvent than tea and solvent immiscible with tea ☑B if solvent was miscible with tea then there would be no separation ☑C if solvent was miscible with tea then there would be no separation ☑D caffeine not extracted from tea if was more soluble in tea than the solvent
26	В	92	☑A This would allow a judgement of the accuracy of the original result obtained ☑B Pure Vitamin C solution of known concentration would allow a control to be obtained ☑C This would improve the accuracy of the result obtained ☑D This would allow comparison of Vitamin C content of different juices
27	В	49	Ba(OH)2 no. of mol = volume x concentration = 0.05 litres x 0.010 mol l $^{-1}$ = 0.0005 mol Na2SO4 no. of mol = volume x concentration = 0.05 litres x 0.010 mol l $^{-1}$ = 0.0005 mol Ba(OH)2 + Na2SO4 \longrightarrow BaSO4 + 2NaOH 1mol 1mol 2mol 0.0005 mol 0.0005 mol 0.0005 mol 0.0005 mol 0.001 mol concentration = $\frac{\text{no. of mol volume}}{\text{volume}}$ = $\frac{0.001 \text{ mol litres}}{0.1 \text{ litres}}$ = 0.010 mol l $^{-1}$
28	С	60	Br ₂ gfm = $2 \times 79.9 = 159.8g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{5.16g}{159.8g \text{ mol}^{-1}} = 3.23 \times 10^{-2} \text{mol}$ $C_6H_5NH_2 + 3Br_2 \longrightarrow C_6H_2Br_3NH_2 + 3HBr$ 1mol 3mol $1.06 \times 10^{-2} \text{mol}$ 3.23×10 ⁻² mol
29	В	72	Tbuprofen $C_{13}H_{18}O_2$ = $(13\times12)+(18\times1)+(2\times16)$ = $156+18+32$ = $206g$ 300mg ibuprofen = $0.3g$ ibuprofen \longrightarrow 1 tablet \times $206g$ ibuprofen \longrightarrow 1 tablet \times $206f$ 0.3 = 687 tablets
30	Α	75	BaCl ₂ •2H ₂ O gfm = $(1\times137.3)+(2\times35.5)+(4\times1)+(2\times16)=137.3+71+4+32=244.3g$

203	2017 Adv Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning								
1 a(i)	Answer to include:	1 st Mark: electrons promoted/excited 2 nd Mark: electrons falls <u>and</u> energy/photon/light emitted								
1a(ii)	Electron transitions between different energy levels	The various energy levels and subshells in an atom have various differences in energy between them. Each different transition will correspond to a different wavelength of light.								
1b	185.9	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^{8} \text{ m s}^{-1}}{644 \times 10^{-9} \text{m}}$ $= 185928 \text{ J mol}^{-1}$ $= 185.9 \text{ kJ mol}^{-1}$								
2a(i)	0.0304	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
2a(ii)	More forward reaction Value of K increases	Increase in temp favours the endothermic reaction (forward reaction) More products formed and less reactants remain $K = \frac{\uparrow [Product\ concentrations]}{\downarrow [Reactant\ concentrations]} = \uparrow \text{ value\ of\ } K$								
2b(i)	$ \begin{pmatrix} CI & CI \\ CI & CI \\ CI & CI \end{pmatrix} $	electron pairs = $\frac{\text{no. of outer electrons in central atom + no. of bonds - charge}}{2}$ $= \frac{5+6-(-1)}{2} = \frac{12}{2} = 6 \text{ electron pairs (octahedral)}$								
2b(ii)	Greater electron repulsion from P=O	The P=O double bond has 4 electrons in it (one sigma and one pi bond) which pushes the P-Cl bonds closer together.								
3a(i) Part A	-882	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (2x-350) + (2x-297) - (2x-206) + (3x0)$ $= (-700 - 594) - (-412 - 0)$ $= -1294 - (-412)$ $= -882 \text{ kJ mol}^{-1}$								
3a(i) Part B	-147	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)}$ - $\Sigma S^{\circ}_{(reactants)}$ = $(2\times44) + (2\times248)$ - $(2\times58) + (3\times205)$ = $88 + 496$ - $(116 + 615)$ = 584 - 731 = $-147 \text{ J K}^{-1} \text{ mol}^{-1}$								
3a(ii)	6000	The reaction becomes thermodynamically feasible when ΔG° = 0 $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ = 0 \therefore \ T\Delta S^\circ = \Delta H^\circ \therefore \ T = \frac{\Delta H^\circ}{\Delta S^\circ} = \frac{-882 \times 1000 \ \text{J mol}^{-1}}{-147 \ \text{J K}^{-1} \ \text{mol}^{-1}} = 6000 \text{K}$								

3b	Answer to include:				1 st Mark: Zinc is a gas at 1200°C and is cooled in a condenser 2 nd Mark: Lead is a liquid at 1200°C and collected at bottom of container							
4a(i)	4 or +4 or IV	V + (2x-2) = 0 ∴ V	′-4=0 ∴ V=	: +4								
4 a(ii)	Diagram showing:	(V atom: $1s^22s^22p^63s$ Answer: $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$	$r^2 3p^6 3d^3 4s^2 \therefore V ii$ $r \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$ $r \downarrow \uparrow \downarrow$	n VO ₂ 1s ² 2s	² 2p ⁶ 3s ² 3p ⁶ 3d ¹) 1 1 3 3 d							
4b(i)	Rate = k [V ³⁺] [Fe ³⁺]	Rate = $k [V^{3+}]^1$	[Fe ³⁺] ¹ = k [V	′³+][Fe³+]							
4b(ii) Part A	Zero order Fe ²⁺ only in fast step	Reactants that do no determining step. Th	• •	•	not take part in the rate r.							
4b(ii) Part B	Reactants and catalyst are in same state	Type of Catalyst Homogeneous Ca Heterogeneous Ca	talyst is in the so talyst is in a diff		the reactants							
4c	92.3mg		1000g steel ◀── 1300g steel ◀──	► 71mg Van	00/1000							
5	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. 1 mark all Demonstrates a limite understanding of the chemistry involved. The candidate to the situation, showing that that at least a little of chemistry within the understood.										
6a(i)	Both electrons in bond come from same atom		ons to form a cov	alent bond.	r of electrons on an atom One formed, a dative onds.							
6a(ii)	HN NH2	The lone pairs on the Cu ²⁺ ion at the centr	•	_	l are attracted to central							
6b(i)	Neutralisation	acid + ethanoic acid + 2CH3COOH +	metal hydroxide zinc hydroxide Zn(OH)2		salt + water zinc ethanoate + water n(CH ₃ COO) ₂ + 2H ₂ O							
6b(ii)	Partial ionisation in solution	<u> </u>		Definition ation of acid into								
6b(iii) Part A	Desiccator	A desiccator is a device for h samples to cool when heating	olding samples in a moist	ure-free environ	nment and can be used to allow							
6b(iii) Part B	2	$Zn(CH_3COO)_2$ gfm = $(1x65.4)+(4x12)+(6x1)+(4x16)$ = $65.4+48+6+64$ = $183.4g$ Mass of H_2O removed on heating = $5.00g - 4.18g = 0.82g$ $Zn(CH_3COO)_2$ H_2O 4.18g $0.82g1mol = 183.4g 0.82g \times \frac{183.4}{4.18}= 36.0 g = 2mol H_2O$										
6b(iii) Part C	One answer from:	Sample decomposed	Not fully dry/ ated to a constant mass Reabsorbed water/ cooled in desiccator		ng product/side reactions							

7	A -	1 2 3 4 Minimum/small volume Hot solvent/hot ethanol Filter (to remove impurities) Cool
7a(i)	Answer:	All four parts required for 2 marks, two or three required for 1 mark
7	Maltina Daint	Other acceptable answers:
7a(ii)	Melting Point	Infra-red IR spectroscopy Nuclear-magnetic resonance (NMR) Mass Spectroscopy Chromatography/TLC
7b	0.84g	$\frac{\text{Phenol no. of mol}}{\text{gfm}} = \frac{\text{mass}}{94g \text{ mol}^{-1}} = 0.0102 \text{mol (available)}$ $\frac{\text{Phthalic anhydride no. of mol}}{\text{gfm}} = \frac{\frac{\text{mass}}{94g \text{ mol}^{-1}}}{148g \text{ mol}^{-1}} = 0.00709 \text{mol (available)}$ $\frac{2C_6H_6O}{2\text{mol}} + \frac{C_8H_4O_3}{1\text{mol}} = \frac{C_{20}H_{14}O_4}{1\text{mol}} + H_2O$ $\frac{2\text{mol}}{0.0102 \text{mol}} = \frac{1\text{mol}}{0.0051 \text{mol}} = \frac{1\text{mol}}{0.0051 \text{mol}}$ $\frac{0.0051 \text{mol}}{(\text{limiting factor})} = \frac{1.62g}{(\text{excess})}$ $\frac{1.05g}{148g \text{ mol}^{-1}} = 0.0051 \text{mol}$ $\frac{1}{100} = \frac{1.05g}{148g \text{ mol}^{-1}} = 1.62g$ $\frac{1.05g}{148g \text{ mol}^{-1}} = 0.0051 \text{mol}$ $\frac{1}{100} = \frac{1.05g}{148g \text{ mol}^{-1}} = 1.62g$ $\frac{1.05g}{148g \text{ mol}^{-1}} = 1.62g$
		100% Yield = 1.62g : 58% Yield = ⁵⁸ / ₁₀₀ × 1.62g = 0.94g
	.	Carbohydrate Glucose Fructose Maltose Sucrose Starch
8a(i)	$C_6H_{12}O_6$	Formula $C_6H_{12}O_6$ $C_6H_{12}O_6$ $C_{12}H_{22}O_{11}$ $C_{12}H_{22}O_{11}$ $(C_6H_{10}O_5)_n$ Reaction with Reaction with Relationship and Reaction with Reaction w
		Beaction Will Blue→brick red Blue→brick red Blue→brick red no reaction no reaction
8a(ii)	One answer from:	Different number of peaks/ Different Different splitting Different peak area/protons/hydrogen environments shift patterns patterns/number of sub peaks heights/integrals
8b	Ring structure restricts rotation	Whilst there is no C=C double bond for geometric isomerism in these sugars, the ring structure prevents the rotation of the other bonds. This allows the trans-isomer (-OH groups are on opposite sides of the ring in glactose) and the cis-isomer (-OH groups are on same side of the ring in glucose)
8c(i)	4	OHH OHOH OHC—C—C—C—C—CH2OH H OHH H Four carbons have four different groups attached to them. Chiral Carbons are carbons with four different groups attached to it.
8c(ii)	One answer from:	These diagrams show two groups on each chiral centre being reflected. Other correct answers can have more than one chiral centre reflected. H H OH OH H GH OH OH OH H H OH O
	Hydrogen Bonding	Hydrogen bonding occurs between molecules which contain -NH, -NH2 and

8d(ii)	HO OH O	The enzyme active site binds to parts of the molecule that have the ability to form hydrogen bonds (i.eNH2 or -OH groups) There are three -OH groups on the right of the molecule which would have the ability of bind to the active site (any two required in answer for 1 mark)							
9a(i)	CH ₃	H-Br adds across the C=C double bond in an addition reaction.							
9a(ii)	Less stable carbocation	The tertiary carbocation is the more stable carbocation and he major product has the bromine and methyl groups on the same carbon. The carbocation which forms the minor product is less stable.							
9b	HCl(aq)/Hydrochloric acid (or any other named dilute acid)	HCl on its own would not be correct as the acid must be dilute. CH_3 $C=N$ $COOH$ CH_3 $C=N$ $COOH$							
9c	Mechanism showing:	CH ₃ Br slow CH ₃ CH ₃ OH							
9d	One from:	1-methoxy-1-methylcyclohexane 1-methyl-1-methoxycyclohexane methyl-1-methoxycyclohexane methyl-1-methoxycyclohexane methylcyclohexane							
10a(i)	1.4×10 ⁻³ mol	average titre = $\frac{18.5 \text{cm}^3 + 18.6 \text{cm}^3}{2}$ = $\frac{37.1 \text{cm}^3}{2}$ = 18.55cm^3 = 0.01855litres MnO ₄ - no. of mol = volume × concentration = $0.01855 \text{litres} \times 0.030 \text{mol } l^{-1}$ = $5.565 \times 10^{-4} \text{mol}$ $2MnO_4^- + 5H_2O_2 + 6H^+ \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$ 2mol 5mol 5.565×10-4mol 1.391×10-3mol							
10a(ii)	1.4	20cm³ diluted stain remover 1.4×10⁻³ mol H_2O_2 100cm³ diluted stain remover 7.0×10⁻³ mol H_2O_2 5cm³ undiluted stain remover 7.0×10⁻³ mol H_2O_2 7.0×10⁻³ mol H_2O_2 concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{7.0×10⁻³ mol}{0.005 \text{ litres}} = 1.4 \text{ mol } l⁻¹$							
10a(iii)	One answer from:	Titrate with (named) standard solution/solution of known concentration Carry out colorimetry with a standard solution/solution of known concentration							
10b	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.							
11a(i)	One answer from:	Similar polarities Volatile Inert Both non-polar Low boiling point Unreactive Similar intermolecular forces Evaporates easily Does not react							
11a (ii)	One answer from:	To prevent To allow More vigorous To dissolve/extract More vapours escaping extended heating heating maximum efficient							
11b(i)	value between 4.5-6.0 (inclusive)	Proton environment 1 corresponds to $-CH = CH_2$ grouping From Data booklet: Chemical shift at 6.0-4.5							

11b(ii)	1 or 3	Skeletal Formula Full Structural Formula				H C O O O O O C C C O O O C C C O O O C C C C O O O C C C C O O O C C C C C C O O O C				
()		Carbon	0	0	6	4	6	6	0	
		Number of Adjacent H	1	3	1	0	0	0	0	
		Peak No	Doublet	Quadruplet	Double	Singlet	Singlet	Singlet	Singlet	
		Diagram			Ш					
	Step 1 (electrophilic) addition	Step 1: Addition of I H C O Step 2: Nucleophilic st	H C H	on of -NH	H ddition of HBr	H C (H - C - H H C - H H C - N	H H C H	